Un equipo de investigación de la Universidad de Jaén y de la Universidad de Murcia ha diseñado un sistema para textos en español que clasifica los mensajes de odio dirigidos a través de redes sociales, ya sea por motivos de raza, género, orientación sexual, nacionalidad o religión. Con esta herramienta de procesamiento del lenguaje natural, se podrán agilizar los mecanismos de alerta sobre esas publicaciones y detenerlas antes de su difusión masiva.

Estas permiten saber cuáles son los significados que más influyen sobre una palabra en concreto, útil en casos de polisemia o anáfora. De esta forma, alcanza unos resultados cercanos al 90% de precisión. El desafío de esta herramienta de procesamiento del lenguaje natural es agilizar la detección del lenguaje ofensivo para evitar su propagación masiva.

La ingente cantidad de publicaciones diarias en medios sociales hace que sea imposible revisar cada comentario a mano. Para reducir el número de comentarios que deben ser revisados ​​por expertos o incluso para el desarrollo de sistemas autónomos de detección, los investigadores proponen un modelo de identificación automática de discursos de odio destinado a frenar su dispersión.

Los mensajes de odio en redes sociales son delito

Estudios anteriores apuntan que la presencia de estos mensajes dirigidos a dañar en las redes sociales se correlaciona con los delitos de odio en la vida real. «No es factible depender de la supervisión manual para detener estas palabras ofensivas. Por ello, queremos contribuir a la detección del discurso de odio en español con un modelo automático y preciso que sea más rápido», incide la investigadora del Grupo Sistemas Inteligentes de Acceso a la Información (SINAI) de la Universidad de Jaén Salud María Jiménez Zafra, una de las autoras del estudio.

Textos representados

Para que el ordenador ‘entienda’ el lenguaje natural se requiere una codificación adecuada. Para ello, el texto se traduce a modelos estadísticos que capturan diversas dimensiones del lenguaje. De esta forma, los investigadores incluyen 365 rasgos de interés extraídos de la herramienta UMUTextStats organizados en distintas categorías.

Así se contabilizan verbos, pronombres, adverbios, frases hechas o marcadores del discurso. Junto a estos métodos que atienden a la propia palabra, se entrenan redes neuronales que cuentan con áreas especializadas en ciertas tareas, aprendiendo con la incorporación de nuevos datos. El resultado de esta combinación es un sistema para el idioma español más preciso, generalizable e interpretable.

Además, el modelo generado fue evaluado con un conjunto más amplio de datos. «Los estudios existentes hasta la fecha trabajan con uno o dos de los conjuntos de datos más conocidos en español como HaterNet y HatEval. Sin embargo, existen más que la comunidad científica debería conocer y que podrían ayudar a avanzar en el estudio de este fenómeno», precisa el catedrático de la Universidad de Murcia Rafael Valencia García.

La siguiente fase de la investigación será mejorar la interpretabilidad del sistema para que estos modelos sean comprensibles por cualquier persona no experta, es decir, que puedan entender cómo el algoritmo ha decidido clasificar ese mensaje de una forma u otra.

El equipo de investigación apunta que este modelo se plasmará en aplicaciones que indiquen de forma rápida si un mensaje contiene elementos de odio o no. Así se agilizará el mecanismo de alerta en las plataformas de medios sociales para avisar sobre la presencia de elementos odiosos en los contenidos o el seguimiento de usuarios que viertan continuamente mensajes de odio.

Leave a comment

Deja un comentario